- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Abdullah, Natasha (1)
-
Abraao, Marcos (1)
-
Abudayyeh, Omar O. (1)
-
Adel, Ait-hamlat (1)
-
Afaq, Muhammad (1)
-
Afshin, Evan E. (1)
-
Ahmad Kassim, Affifah Saadah (1)
-
Ahsanuddin, Sofia (1)
-
Al-Quaddoomi, Faisal S. (1)
-
Alam, Ireen (1)
-
Albuquerque, Gabriela E. (1)
-
Alexiev, Alex (1)
-
Ali, Kalyn (1)
-
Alicea, Josue (1)
-
Alvarado Arnez, Lucia Elena (1)
-
Alvarado-Arnez, Lucia E. (1)
-
Aly, Sarh (1)
-
Amachee, Jennifer (1)
-
Amorim, Maria G. (1)
-
Ampadu, Majelia (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Collateral sensitivity, where resistance to one drug confers heightened sensitivity to another, offers a promising strategy for combating antimicrobial resistance, yet predicting resultant evolutionary dynamics remains a significant challenge. We propose here a mathematical model that integrates fitness trade-offs and adaptive landscapes to predict the evolution of collateral sensitivity pathways, providing insights into optimizing sequential drug therapies. Our approach embeds collateral information into a network of switched systems, allowing us to abstract the effects of sequential antibiotic exposure on antimicrobial resistance. We analyze the system stability at disease-free equilibrium and employ set-control theory to tailor therapeutic windows. Consequently, we propose a computational algorithm to identify effective sequential therapies to counter antibiotic resistance. By leveraging our theory with data on collateral sensivity interactions, we predict scenarios that may prevent bacterial escape for chronic Pseudomonas aeruginosa infections.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Danko, David; Bezdan, Daniela; Afshin, Evan E.; Ahsanuddin, Sofia; Bhattacharya, Chandrima; Butler, Daniel J.; Chng, Kern Rei; Donnellan, Daisy; Hecht, Jochen; Jackson, Katelyn; et al (, Cell)null (Ed.)
An official website of the United States government
